Meson-Nucleon Physics : An Overview

Australian Government

Australian Research Council

Anthony W. Thomas

12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary : May 31st 2010

Outline

Nucleon Structure

- strangeness, quark & gluon spin & angular mom

Meson and Baryon Excited States

discovery and structure

Nucleon & Hadron Structure in-Medium

- EMC effect, hypernuclei, meson binding

- Symmetry Breaking and Standard Model Tests NuTeV, Qweak...
- "New Facilities"
 - FAIR, JLab 12 GeV, JPARC, EIC

Nucleon Structure

 Bacchetta, Brash, Burkardt, Burtin, Hägler, Jiang, Kroll, Moutarde, Pitt, Riedl, Tandy, Young

Testing Non-Perturbative QCD

 Strangeness contribution is a vacuum polarization effect, analogous to Lamb shift in QED

It is a fundamental test of non-perturbative QCD

Strange Quarks in the Proton

There have been a number of major steps forward recently, both theory and experiment :

- > Calculation of $G_{E,M}^{s}$ (Q²) :
 - Direct: Kentucky (xQCD : K.-F. Liu)
 - Indirect: JLab-Adelaide
- Experimental determination of G_{E,M}^s (Q²)
 - G0 and Happex
 - Mainz PVA4 and Bates

Agreement between theory and experiment excellent
 consistent global analysis valuable

First Accurate Determination of G_M^s **from QCD**

1.25±0.12

Yields : $G_{M}^{s} = -0.046 \pm 0.019 \mu_{N}$

Leinweber et al., PRL 94 (2005) 212001

Direct Calculation of $G_M^{s}(Q^2) - K$.-F. Liu et al.

Strangeness Magnetic Form Factors with 3 Quark Masses $(m_n = 0.6, 0.7, 0.8 \text{ GeV})$; T. Doi et al. (χ QCD) arXiV:0903.3232

$G_M^S(Q^2=0) = -0.017(25)(07) \mu_N$

c.f. -0.046 ± 0.019 (Leinweber et al.)

N.B. Result of Doi et al. would increase by factor ~1.8 when light quark mass takes physical value with m_s fixed (Wang et al., hep-ph/0701082 :Phys Rev D75, (2008))

Global Analysis of PVES Data

 $Q^2 = 0.1 GeV^2$

Global analysis: Young et al., PRL 99 (2007)122003 and Young arXiv 1004.5163 [nucl-th]

Octet Baryon Masses - LHPC Data

(Walker-Loud et al., arXiv:0806.4549)

Summary of Results of Combined Fits (of 2008 LHPC & PACS-CS data)

$$\bar{\sigma}_{Bq} = (m_q/M_B)\partial M_B/\partial m_q$$

Of particular interest:

$$\label{eq:starses} \begin{split} \sigma \ commutator \ well \ determined : \sigma_{\pi N} &= 47 \ (9) \ (1) \ (3) \ MeV \\ and \ strangeness \ sigma \ commutator \ \underline{small} \\ m_s \ \partial M_N / \ \partial \ m_s &= 31 \ (15) \ (4) \ (2) \ MeV \\ NOT \ several \ 100 \ MeV \ ! \end{split}$$

Profound Consequences for Dark Matter Searches

CMSSM Predictions for Dark Matter σ

95% CL predictions for all **Constrained Minimal Super-**Symmetric Standard Model extensions consistent with astrophysical data

Cross sections 1-2 orders of magnitude smaller than before BUT very well determined and separated!

Where is the Spin of the proton?

• Modern data (Hermes, COMPASS) yields: $\Sigma = 0.33 \pm 0.03 \pm 0.05$

 $(c.f. 0.14 \pm 0.03 \pm 0.10 \text{ originally})$

- In addition, there is little or no polarized glue
 - COMPASS: $g_{1}^{D} = 0$ to $x = 10^{-4}$
 - A_{LL} (π^0 and jets) at PHENIX & STAR: $\Delta G \sim 0$ Hermes, COMPASS and JLab: ΔG small
- Hence: <u>axial anomaly plays at most a small role in</u> <u>explaining the spin crisis</u>
- Return to alternate explanation lost in 1988 in rush to explore the anomaly

One-Gluon-Exchange Correction

• Further reduces the fraction of spin carried by the quarks in the bag model (naively 0.65)

• $\Sigma \rightarrow \Sigma - 3G$; with G ~ 0.05 $\Sigma \rightarrow 0.65 - 0.15 = 0.5$

• Effect is to transfer quark spin to quark (relativity) and anti-quark (OGE) orbital angular momentum

(d)

Effect of the Pion Cloud

- Probability to find a bare N is Z ~ 70%
- Biggest Fock Component is N π ~ 20-25% and 2/3 of the time N spin points down

<u>2</u> P_{N π}

- Next biggest is $\Delta \pi \sim 5-10\%$
- To this order (i.e. including terms which yield LNA and NLNA contributions):

7

• Spin gets renormalized by a factor : Z - 1/3 P_{N π} + 15/9 P_{$\Delta \pi$} ~ 0.75 - 0.8 Hence: $\Sigma = 0.65 \rightarrow 0.49 - 0.52$

Schreiber-Thomas, Phys Lett B215 (1988)

The Balance Sheet – fraction of total spin

	2 L _{u+ubar}	2 L _{d+dbar}	Σ
Non-relativistic			1.0
Relativity (e.g. Bag)	0.46	-0.11	0.65
Plus OGE	0.52	-0.02	0.50
Plus pion	0.50	0.12	0.38

At model scale: $L_u + S_u = 0.25 + 0.42 = 0.67 = J_u$: $L_d + S_d = 0.06 - 0.22 = -0.16 = J_d$

Phys Rev Lett, 101 (2008) 102003

LHPC Lattice Results

- At first glance shocking : $L^u \sim -0.14$ and $L^d \sim +0.18$ (c.f. + 0.25 and +0.06 in this model)
- N.B. Disconnected terms missing : NO idea of the of the error in L^{u+d} Also: unknown volume dependence in L^{u-d}

Solution of the LO Evolution Equations

L^u and L^d both small and cross-over rapidly: AWT, PRL 101 (2008) 102003

NLO Evolution – using Bass-Thomas update

Experimental effort just beginning!

For the moment analysis highly model dependent – but promising!

... from DVCS: (JLAB PRL 99 (2007) 242501 and HERMES JHEP 0806:066 (2008)

special research SUBAT SUBAT

Meson and Baryon Excited States

 Arends, Beck, Berger, Braaten, D'Angelo, De Vita, Edwards, Giovannella, Julia Diaz, Lange, Mitchell, Schumacher

Situation on the analysis of meson production reaction

$\pi N \to \gamma N \to$	πN	ηN	$\pi\pi N$	$K\Lambda, \Sigma$
Dubna-Mainz-NTU	0	0		
MAID	0	0		
Bonn-Gatchina	00	00	00	00
IHEP(Beijin)-Saclay		00		
Zagreb	0	0		
CLAS	0	0	0	
Juelich-Georgia	00	0		0
EBAC	00	00	00	00

Important to study all available inelastic reactions with coupled channel analysis for both strong and em probes.

from T. Sato

The fit of the $\gamma p ightarrow K\Lambda$ differential cross section (CLAS 2009)

IHEP(Beijing)-BES

New tool for N*,Y* study : completely differrent S/N from $\pi N, \gamma^* N$

The first experiment "seeing" N*(1440) in π N mass spectrum

BESII	$M = 1358 \pm 17$,	$\Gamma =$	179 ± 56	MeV
PDG08	$M = 1365 \pm 15$,	$\Gamma =$	190 ± 30	MeV

Lattice QCD: Spin Identified Nucleon Spectrum

Phenomenology: Nucleon Spectrum

ADELAIDE UNIVERSITY AUSTRALIA

from R. Edwards

STRUCTURE

Exotic Matter

Nucleon and Hadron Structure in-Medium

- Cloët, Djalali, Higinbotham, Hinterberger

The EMC Effect: Nuclear PDFs

- Observation stunned and electrified the HEP and Nuclear communities 20 years ago
- Nearly 1,000 papers have been generated.....
- Medium modifies the momentum distribution of the quarks!

SUBAT

Recent Calculations for Finite Nuclei

Spin dependent EMC effect TWICE as large as unpolarized

FIG. 7: The EMC and polarized EMC effect in ¹¹B. The empirical data is from Ref. [31].

FIG. 9: The EMC and polarized EMC effect in $^{27}\mathrm{Al.}\,$ The empirical data is from Ref. [31].

Cloët et al., Phys. Lett. B642 (2006) 210 (nucl-th/0605061)

The Standard Model Works Again

Apply CSV and isovector EMC corrections plus estimate systematic error arising from $s^{-}(x) \neq 0$:

SPECIAL RESEARCH

SUBAT

2)MIC

STRUCTUR

Large-x Behaviour of Nuclear Structure Functions

Symmetry Breaking and Standard Model Tests — Cloët, Kupsc

Test of Physics beyond the Standard Model : PVES

Young et al., Phys Rev Lett 99 (2007) 122003

Lower Limit on Mass Scale for New Physics

Qweak constrains new physics to beyond 2 TeV

Or... Discovery

Assume Qweak takes central value of current measurements

γ-Z Box Diagram

- Re-examined by Sibirtsev et al., following Gorchtein & Horowitz (arXiv:1002.0740 [hep-ph])
- Took advantage of CLAS data on photo-production (and HERA data)

VIVERSITY

Result for $\gamma - Z$ box

• From measurement of A_{PV} at 1.165 GeV (Q_{weak}) the value of Q_W^p extracted needs to be reduced by $0.0047^{+0.0011}_{-0.0004}$ before comparison with the value deduced from atomic PV

 SUMMARY: This new correction is large but under control, thanks largely to CLAS data on photo-production and with it Q_{weak} can achieve its goal

"New" Facilities

- McKeown, Sawada, Wiedner

Hadron Facility of J-PARC

RCS

NZ

Diselle and the in talk 0000

50GeV-PS

.....

from P

古山

Three Dimensional Nuclear Chart

FAIR - Facility for Antiproton and Ion Research

EIC an Ideal Place to test QED Splitting

- Effect increases with Q². Use (e⁻, v) and (e⁺, \overline{v}) on p and d
- This gives CSV and d/u unambiguously

Hobbs, Londergan and Thomas, in preparation

Enjoy the meeting!

